與溶膠-凝膠過程相比,超臨界流體干燥過程所涉及的體系較復雜,工藝條件較多,且超臨界流體干燥過程的許多工藝條件對最終氣凝膠的結構和性能會產生較大的影響。因此,正確選擇這些工藝條件對制備高性能的氣凝膠至關重要。這些工藝條件主要有:干燥介質種類、介質流量,干燥時間、干燥溫度、干燥壓力等。
1.干燥時間的影響:
SiO2醇凝膠置于CO2超臨界萃取干燥的高壓萃取釜內,通入超臨界條件下的CO2進行萃取干燥。控制超臨界條件為:壓力P=10MPa,溫度T=40℃,流速為10kg/min,分別萃取干燥5h、10h、20h,發(fā)現(xiàn)不同干燥時間得到的SiO2氣凝膠其比表面積是不同的,分別為574m2/g、583m2/g、603m2/g。
這說明萃取時間越長,得到的氣凝膠表面積也越大。但從綜合經濟效益考慮,干燥時間應擇優(yōu)選取。
2.干燥壓力的影響:
在保證達到超臨界流體條件下,隨著超臨界干燥壓力的增加氧化物氣凝膠的比表面積不斷下降。這是因為隨著干燥壓力的增大,流體密度在增大,傳質阻力在增加,引起了傳質速率的減小,使氣凝膠比表面積下降。當然,若壓力達不到超臨界的條件,溶劑的溶解能力會大大下降,并與固體顆粒間產生表面張力,脫除溶劑時容易發(fā)生凝膠結構的破壞,導致表面積及孔體積的減小。因此最優(yōu)的干燥壓力應選擇在稍大于介質臨界壓力附近。
3.干燥溫度的影響:
MnO2氣凝膠,采用SCFD技術對凝膠進行干燥,干燥過程中固定干燥反應時間為2h,超臨界干燥壓力為6.6MPa,通過改變超臨界干燥溫度,結果顯示,隨著超臨界干燥溫度的升高,氣凝膠粉體的比表面積逐漸增加,在263℃達到最大值;然后隨溫度的升高,比表面積又逐漸減小。
這說明在超臨界條件下,溫度有著兩方面的影響:一方面,溫度越高介質流體的密度就越小,傳質推動力就大,有利于水的驅除,提高了氣凝膠的表面積;另一方面,溫度越高,在水熱的作用下顆粒容易長大,氣凝膠的表面積會減小。為此,應根據這兩方面的消長趨勢,合理選擇一個合格溫度。
4.干燥介質的影響:
TiO2氣凝膠在制得醇凝膠后,分別采用超臨界乙醇和超臨界CO2為干燥介質進行TiO2醇凝膠的干燥。控制超臨界乙醇的干燥條件為:T=270℃,P=8Mpa,恒溫時間為0.5h;超臨界CO2的干燥條件為:液體CO2置換乙醇的置換時間t=72h,T=42℃,P=9.0Mpa,干燥恒溫時間為5h。將不同干燥介質所得的TiO2氣凝膠進行光催化降解羅丹明B實驗的比較;實驗結果表明,用CO2為干燥介質所得的TiO2氣凝膠光催化活性優(yōu)于用乙醇為干燥介質所得的氣凝膠。
因為CO2干燥法的干燥溫度低,過程無易燃易爆氣體存在,所制備的氣凝膠粒子又不含碳,所以以CO2為干燥介質的SCFD技術更易于工業(yè)化開發(fā)。
5.介質流量的影響:
ZrO2氣凝膠,通過設計正交實驗考察CO2流量等因素對ZrO2氣凝膠制備效果的綜合影響。采用四因素三水平正交實驗條件為:CO2流量為0.42L/h、0.65L/h、0.90L/h;干燥壓力為8.6MPa、9.0MPa、9.5MPa;干燥時間為5h、6h、7h;干燥溫度為40℃、50℃、60℃。
開原化機制造實驗得出的最優(yōu)干燥條件為:CO2流量0.65L/h,干燥壓力9.5MPa,干燥時間6h,干燥溫度50℃。這說明干燥介質的流量與干燥效果不是呈簡單的線性關系,而是存在一最優(yōu)值。